Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(2): e0299823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38170993

RESUMO

Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor signal transducer and activator of transcription 3 (STAT3). To better understand the role of STAT3 during gammaherpesvirus latency and the B cell response to infection, we used the model pathogen murine gammaherpesvirus 68 (MHV68). Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak MHV68 latency approximately sevenfold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to wild-type (WT) littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeric mice consisting of WT and STAT3 knockout B cells. We discovered a dramatic reduction in latency in STAT3 knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that MHV68 infection shifts the gene signature toward proliferation and away from type I and type II IFN responses. Loss of STAT3 largely reversed the virus-driven transcriptional shift without impacting the viral gene expression program. STAT3 promoted B cell processes of the germinal center, including IL-21-stimulated downregulation of surface CD23 on B cells infected with MHV68 or EBV. Together, our data provide mechanistic insights into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.IMPORTANCEThere are no directed therapies to the latency program of the human gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus. Activated host factor signal transducer and activator of transcription 3 (STAT3) is a hallmark of cancers caused by these viruses. We applied the murine gammaherpesvirus pathogen system to explore STAT3 function upon primary B cell infection in the host. Since STAT3 deletion in all CD19+ B cells of infected mice led to altered B and T cell responses, we generated chimeric mice with both normal and STAT3-deleted B cells. B cells lacking STAT3 failed to support virus latency compared to normal B cells from the same infected animal. Loss of STAT3 impaired B cell proliferation and differentiation and led to a striking upregulation of interferon-stimulated genes. These findings expand our understanding of STAT3-dependent processes that are key to its function as a pro-viral latency determinant for oncogenic gammaherpesviruses in B cells and may provide novel therapeutic targets.


Assuntos
Infecções por Vírus Epstein-Barr , Gammaherpesvirinae , Infecções por Herpesviridae , Herpesvirus Humano 8 , Rhadinovirus , Sarcoma de Kaposi , Animais , Humanos , Camundongos , Gammaherpesvirinae/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 8/metabolismo , Camundongos Endogâmicos C57BL , Rhadinovirus/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Latência Viral/genética
2.
EMBO Rep ; 25(3): 1541-1569, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38263330

RESUMO

To globally profile circRNAs, we employ RNA-Sequencing paired with chimeric junction analysis for alpha-, beta-, and gamma-herpesvirus infection. We find circRNAs are, as a population, resistant to host shutoff. We validate this observation using ectopic expression assays of human and murine herpesvirus endoribonucleases. During lytic infection, four circRNAs are commonly induced across all subfamilies of human herpesviruses, suggesting a shared mechanism of regulation. We test one such mechanism, namely how interferon-stimulation influences circRNA expression. 67 circRNAs are upregulated by either interferon-ß or -γ treatment, with half of these also upregulated during lytic infection. Using gain and loss of function studies we find an interferon-stimulated circRNA, circRELL1, inhibits lytic Herpes Simplex Virus-1 infection. We previously reported circRELL1 inhibits lytic Kaposi sarcoma-associated herpesvirus infection, suggesting a pan-herpesvirus antiviral activity. We propose a two-pronged model in which interferon-stimulated genes may encode both mRNA and circRNA with antiviral activity. This is critical in cases of host shutoff, such as alpha- and gamma-herpesvirus infection, where the mRNA products are degraded but circRNAs escape.


Assuntos
Herpes Simples , Herpesviridae , Humanos , Camundongos , Animais , RNA Circular , Interferons , RNA Mensageiro , Simplexvirus , Antivirais
3.
bioRxiv ; 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37886542

RESUMO

A first line of defense during infection is expression of interferon (IFN)-stimulated gene products which suppress viral lytic infection. To combat this, herpesviruses express endoribonucleases to deplete host RNAs. Here we demonstrate that IFN-induced circular RNAs (circRNAs) can escape viral-mediated degradation. We performed comparative circRNA expression profiling for representative alpha- (Herpes simplex virus-1, HSV-1), beta- (human cytomegalovirus, HCMV), and gamma-herpesviruses (Kaposi sarcoma herpesvirus, KSHV; murine gamma-herpesvirus 68, MHV68). Strikingly, we found that circRNAs are, as a population, resistant to host shutoff. This observation was confirmed by ectopic expression assays of human and murine herpesvirus endoribonucleases. During primary lytic infection, ten circRNAs were commonly regulated across all subfamilies of human herpesviruses, suggesting a common mechanism of regulation. We tested one such mechanism, namely how interferon-stimulation influences circRNA expression. 67 circRNAs were upregulated by either IFN-ß or -γ treatment, with half of these also upregulated during lytic infection. Using gain and loss of function studies we found an interferon-stimulated circRNA, circRELL1, inhibited lytic HSV-1 infection. We have previously reported circRELL1 inhibits lytic KSHV infection, suggesting a pan-herpesvirus antiviral activity. We propose a two-pronged model in which interferon-stimulated genes may encode both mRNA and circRNA with antiviral activity. This is critical in cases of host shutoff, such as alpha- and gamma-herpesvirus infection, where the mRNA products are degraded but circRNAs escape.

4.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808844

RESUMO

Gammaherpesviruses (GHVs) are oncogenic viruses that establish lifelong infections and are significant causes of human morbidity and mortality. While several vaccine strategies to limit GHV infection and disease are in development, there are no FDA-approved vaccines for human GHVs. As a new approach to gammaherpesvirus vaccination, we developed and tested a replication-dead virus (RDV) platform, using murine gammaherpesvirus 68 (MHV68), a well-established mouse model for gammaherpesvirus pathogenesis studies and preclinical therapeutic evaluations. We employed codon-shuffling-based complementation to generate revertant-free RDV lacking expression of the essential replication and transactivator protein (RTA) encoded by ORF50 to arrest viral gene expression early after de novo infection. Inoculation with RDV-50.stop exposes the host to intact virion particles and leads to limited lytic gene expression in infected cells. Prime-boost vaccination of mice with RDV-50.stop elicited virus-specific neutralizing antibody and effector T cell responses in the lung and spleen. Vaccination with RDV-50.stop resulted in a near complete abolishment of virus replication in the lung 7 days post-challenge and virus reactivation from spleen 16 days post-challenge with WT MHV68. Ifnar1-/- mice, which lack the type I interferon receptor, exhibit severe disease upon infection with WT MHV68. RDV-50.stop vaccination of Ifnar1-/- mice prevented wasting and mortality upon challenge with WT MHV68. These results demonstrate that prime-boost vaccination with a GHV that is unable to undergo lytic replication offers protection against acute replication, reactivation, and severe disease upon WT virus challenge.

5.
J Transl Med ; 21(1): 653, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740179

RESUMO

BACKGROUND: Kaposi sarcoma (KS) is a multicentric tumor caused by Kaposi sarcoma herpesvirus (KSHV) that leads to morbidity and mortality among people with HIV worldwide. KS commonly involves the skin but can occur in the gastrointestinal tract (GI) in severe cases. METHODS: RNA sequencing was used to compare the cellular and KSHV gene expression signatures of skin and GI KS lesions in 44 paired samples from 19 participants with KS alone or with concurrent KSHV-associated diseases. Analyses of KSHV expression from KS lesions identified transcriptionally active areas of the viral genome. RESULTS: The transcript of an essential viral lytic gene, ORF75, was detected in 91% of KS lesions. Analyses of host genes identified 370 differentially expressed genes (DEGs) unique to skin KS and 58 DEGs unique to GI KS lesions as compared to normal tissue. Interleukin (IL)-6 and IL-10 gene expression were higher in skin lesions as compared to normal skin but not in GI KS lesions. Twenty-six cellular genes were differentially expressed in both skin and GI KS tissues: these included Fms-related tyrosine kinase 4 (FLT4), encoding an angiogenic receptor, and Stanniocalcin 1 (STC1), a secreted glycoprotein. FLT4 and STC1 were further investigated in functional studies using primary lymphatic endothelial cells (LECs). In these models, KSHV infection of LECs led to increased tubule formation that was impaired upon knock-down of STC1 or FLT4. CONCLUSIONS: This study of transcriptional profiling of KS tissue provides novel insights into the characteristics and pathogenesis of this unique virus-driven neoplasm.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Neoplasias Cutâneas , Humanos , Sarcoma de Kaposi/genética , Células Endoteliais , Herpesvirus Humano 8/genética , Pele , Interleucina-6
6.
mSphere ; 8(5): e0027823, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37747202

RESUMO

Herpesviruses are large double-stranded DNA viruses that encode core replication proteins and accessory factors involved in nucleotide metabolism and DNA repair. Mammalian uracil-DNA glycosylases (UNG) excise deleterious uracil residues from their genomic DNA. Each herpesvirus UNG studied to date has demonstrated conservation of the enzymatic function to excise uracil residues from DNA. We previously reported that a murine gammaherpesvirus (MHV68) with a stop codon in ORF46 (ORF46.stop) that encodes for vUNG was defective in lytic replication and latency in vivo. However, a mutant virus that expressed a catalytically inactive vUNG (ORF46.CM) had no replication defect unless coupled with additional mutations in the catalytic motif of the viral dUTPase (ORF54.CM). The disparate phenotypes observed in the vUNG mutants led us to explore the non-enzymatic properties of vUNG. Immunoprecipitation of vUNG followed by mass spectrometry in MHV68-infected fibroblasts identified a complex comprising the cognate viral DNA polymerase, vPOL, encoded by ORF9, and the viral DNA polymerase processivity factor, vPPF, encoded by ORF59. MHV68 vUNG co-localized with vPOL and vPPF in subnuclear structures consistent with viral replication compartments. In reciprocal co-immunoprecipitations, the vUNG formed a complex with the vPOL and vPPF upon transfection with either factor alone or in combination. Lastly, we determined that key catalytic residues of vUNG are not required for interactions with vPOL and vPPF upon transfection or in the context of infection. We conclude that the vUNG of MHV68 associates with vPOL and vPPF independently of its catalytic activity. IMPORTANCE Gammaherpesviruses encode a uracil-DNA glycosylase (vUNG) that is presumed to excise uracil residues from viral genomes. We previously identified the vUNG enzymatic activity, but not the protein itself, as dispensable for gammaherpesvirus replication in vivo. In this study, we report a non-enzymatic role for the viral UNG of a murine gammaherpesvirus in forming a complex with two key components of the viral DNA replication machinery. Understanding the role of the vUNG in this viral DNA replication complex may inform the development of antiviral drugs that combat gammaherpesvirus-associated cancers.


Assuntos
Gammaherpesvirinae , Rhadinovirus , Animais , Camundongos , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo , Replicação Viral , Replicação do DNA , DNA Viral/genética , Rhadinovirus/genética , Rhadinovirus/metabolismo , Gammaherpesvirinae/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Uracila , Mamíferos
7.
bioRxiv ; 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37398059

RESUMO

Herpesviruses are large double-stranded DNA viruses that encode core replication proteins and accessory factors involved in nucleotide metabolism and DNA repair. Mammalian Uracil-DNA glycosylases (UNG) excise deleterious uracil residues from their genomic DNA. Each herpesvirus UNG studied to date has demonstrated conservation of the enzymatic function to excise uracil residues from DNA. We previously reported that a murine gammaherpesvirus (MHV68) with a stop codon in ORF46 (ORF46.stop) that encodes for vUNG was defective in lytic replication and latency in vivo. However, a mutant virus that expressed a catalytically inactive vUNG (ORF46.CM) had no replication defect, unless coupled with additional mutations in the catalytic motif of the viral dUTPase (ORF54.CM). The disparate phenotypes observed in the vUNG mutants led us to explore the non-enzymatic properties of vUNG. Immunoprecipitation of vUNG followed by mass spectrometry in MHV68-infected fibroblasts identified a complex comprised of the cognate viral DNA polymerase, vPOL encoded by ORF9 , and the viral DNA polymerase processivity factor, vPPF encoded by ORF59 . MHV68 vUNG colocalized with vPOL and vPPF in subnuclear structures consistent with viral replication compartments. In reciprocal co-immunoprecipitations, the vUNG formed a complex with the vPOL and vPPF upon transfection with either factor alone, or in combination. Last, we determined that key catalytic residues of vUNG are not required for interactions with vPOL and vPPF upon transfection or in the context of infection. We conclude that the vUNG of MHV68 associates with vPOL and vPPF independently of its catalytic activity. IMPORTANCE: Gammaherpesviruses encode a uracil-DNA glycosylase (vUNG) that is presumed to excise uracil residues from viral genomes. We previously identified the vUNG enzymatic activity, but not the protein itself, as dispensable for gammaherpesvirus replication in vivo . In this study, we report a non-enzymatic role for the viral UNG of a murine gammaherpesvirus to form a complex with two key components of the viral DNA replication machinery. Understanding the role of the vUNG in this viral DNA replication complex may inform the development of antiviral drugs that combat gammaherpesvirus associated cancers.

8.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37293087

RESUMO

Antibodies are powerful tools to detect expressed proteins. However off-target recognition can confound their use. Therefore, careful characterization is needed to validate specificity in distinct applications. Here we report the sequence and characterization of a mouse recombinant antibody that specifically detects ORF46 of murine gammaherpesvirus 68 (MHV68). This ORF encodes the viral uracil DNA glycosylase (vUNG). The antibody does not recognize murine uracil DNA glycosylase and is useful in detecting vUNG expressed in virally infected cells. It can detect expressed vUNG in cells via immunostaining and microscopy or flow cytometry analysis. The antibody can detect vUNG from lysates of expressing cells via immunoblot under native conditions but not denaturing conditions. This suggests it recognizes a confirmational based epitope. Altogether this manuscript describes the utility of the anti-vUNG antibody and suitability for use in studies of MHV68 infected cells.

9.
DNA Repair (Amst) ; 128: 103515, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37315375

RESUMO

Uracil DNA glycosylase (UNG) removes mutagenic uracil base from DNA to initiate base excision repair (BER). The result is an abasic site (AP site) that is further processed by the high-fidelity BER pathway to complete repair and maintain genome integrity. The gammaherpesviruses (GHVs), human Kaposi sarcoma herpesvirus (KSHV), Epstein-Barr virus (EBV), and murine gammaherpesvirus 68 (MHV68) encode functional UNGs that have a role in viral genome replication. Mammalian and GHVs UNG share overall structure and sequence similarity except for a divergent amino-terminal domain and a leucine loop motif in the DNA binding domain that varies in sequence and length. To determine if divergent domains contribute to functional differences between GHV and mammalian UNGs, we analyzed their roles in DNA interaction and catalysis. By utilizing chimeric UNGs with swapped domains we found that the leucine loop in GHV, but not mammalian UNGs facilitates interaction with AP sites and that the amino-terminal domain modulates this interaction. We also found that the leucine loop structure contributes to differential UDGase activity on uracil in single- versus double-stranded DNA. Taken together we demonstrate that the GHV UNGs evolved divergent domains from their mammalian counterparts that contribute to differential biochemical properties from their mammalian counterparts.


Assuntos
Infecções por Vírus Epstein-Barr , Uracila-DNA Glicosidase , Animais , Camundongos , Humanos , Uracila-DNA Glicosidase/metabolismo , Leucina/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , DNA/metabolismo , Uracila , Reparo do DNA , Mamíferos/genética
10.
AIDS ; 37(11): 1693-1703, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37352498

RESUMO

OBJECTIVE: The aim of this study was to evaluate baseline differences by HIV status and the impact of pomalidomide on lymphocyte counts and T-cell subsets in patients with Kaposi sarcoma. DESIGN: We prospectively evaluated CD4 + and CD8 + T-cell phenotypes in 19 participants with Kaposi sarcoma enrolled on a phase 1/2 study of pomalidomide (NCT01495598), seven without HIV and 12 with HIV on antiretroviral therapy. METHODS: Trial participants received pomalidomide 5 mg orally for 21 days of 28-day cycles for up to 1 year. Flow cytometry was performed on peripheral blood mononuclear cells at baseline, after three cycles, and at end-of-treatment. Lymphocyte count and T-cell subset comparisons were evaluated by Wilcoxon signed-rank and Mann--Whitney tests. RESULTS: At baseline, HIV + participants had lower CD4 + cell counts (median 416 vs. 742 CD4 + T cells/µl, P  = 0.006), and a decreased proportion of CD57 + (senescent) CD8 + T cells ( P  = 0.007) compared with HIV - participants. After three cycles, pomalidomide led to an increased proportion of CD45RO + CD27 + (central memory) CD4 + ( P  = 0.002) and CD8 + ( P  = 0.002) T cells, a decrease in CD45RO - CD27 - (effector) CD4 + cells ( P  = 0.0002), and expansion of CD38 + /HLADR + (activated) CD4 + ( P  = 0.002) and CD8 + ( P  ≤ 0.0001) T cells. Increased numbers of activated CD8 + T cells persisted at end-of-treatment ( P  = 0.002). After three cycles and at end-of-treatment, there was reduction in the proportion of CD57 + (senescent) CD4 + ( P  = 0.001, 0.0006), and CD8 + ( P  =  < 0.0001, 0.0004) T cells. CONCLUSION: Administration of pomalidomide decreased T-cell senescence and increased T-cell activation in patients with Kaposi sarcoma, suggesting pomalidomide activity in Kaposi sarcoma stems in part from its immunomodulatory effects.


Assuntos
Infecções por HIV , Sarcoma de Kaposi , Humanos , Infecções por HIV/tratamento farmacológico , Sarcoma de Kaposi/tratamento farmacológico , Leucócitos Mononucleares , Subpopulações de Linfócitos T , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Ativação Linfocitária
11.
bioRxiv ; 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36993230

RESUMO

Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor STAT3. To better understand the role of STAT3 during gammaherpesvirus latency and immune control, we utilized murine gammaherpesvirus 68 (MHV68) infection. Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak latency approximately 7-fold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to WT littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeras consisting of WT and STAT3-knockout B cells. Using a competitive model of infection, we discovered a dramatic reduction in latency in STAT3-knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that STAT3 promotes proliferation and B cell processes of the germinal center but does not directly regulate viral gene expression. Last, this analysis uncovered a STAT3-dependent role for dampening type I IFN responses in newly infected B cells. Together, our data provide mechanistic insight into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.

12.
NPJ Vaccines ; 7(1): 108, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127367

RESUMO

Seven viruses cause at least 15% of the total cancer burden. Viral cancers have been described as the "low-hanging fruit" that can be potentially prevented or treated by new vaccines that would alter the course of global human cancer. Kaposi sarcoma herpesvirus (KSHV or HHV8) is the sole cause of Kaposi sarcoma, which primarily afflicts resource-poor and socially marginalized populations. This review summarizes a recent NIH-sponsored workshop's findings on the epidemiology and biology of KSHV as an overlooked but potentially vaccine-preventable infection. The unique epidemiology of this virus provides opportunities to prevent its cancers if an effective, inexpensive, and well-tolerated vaccine can be developed and delivered.

13.
J Virol ; 96(10): e0002722, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35481781

RESUMO

Noncanonical NF-κB signaling is activated in B cells via the tumor necrosis factor (TNF) receptor superfamily members CD40, lymphotoxin ß receptor (LTßR), and B-cell-activating factor receptor (BAFF-R). The noncanonical pathway is required at multiple stages of B cell maturation and differentiation, including the germinal center reaction. However, the role of this pathway in gammaherpesvirus latency is not well understood. Murine gammaherpesvirus 68 (MHV68) is a genetically tractable system used to define pathogenic determinants. Mice lacking the BAFF-R exhibit defects in splenic follicle formation and are greatly reduced for MHV68 latency. We report a novel approach to disrupt noncanonical NF-κB signaling exclusively in cells infected with MHV68. We engineered a recombinant virus that expresses a dominant negative form of IκB kinase α (IKKα), named IKKα-SA, with S176A and S180A mutations that prevent phosphorylation by NF-κB-inducing kinase (NIK). We controlled for the transgene insertion by introducing two all-frame stop codons into the IKKα-SA gene. The IKKα-SA mutant but not the IKKα-SA.STOP control virus impaired LTßR-mediated activation of NF-κB p52 upon fibroblast infection. IKKα-SA expression did not impact replication in primary fibroblasts or in the lungs of mice following intranasal inoculation. However, the IKKα-SA mutant was severely defective in the colonization of the spleen and in the establishment of latency compared to the IKKα-SA.STOP control and wild-type (WT) MHV68 at 16 days postinfection (dpi). Reactivation was undetectable in splenocytes infected with the IKKα-SA mutant, but reactivation in peritoneal cells was not impacted by IKKα-SA. Taken together, the noncanonical NF-κB signaling pathway is essential for the establishment of latency in the secondary lymphoid organs of mice infected with the murine gammaherpesvirus pathogen MHV68. IMPORTANCE The latency programs of the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) are associated with B cell lymphomas. It is critical to understand the signaling pathways that are used by gammaherpesviruses to establish and maintain latency in primary B cells. We used a novel approach to block noncanonical NF-κB signaling only in the infected cells of mice. We generated a recombinant virus that expresses a dominant negative mutant of IKKα that is nonresponsive to upstream activation. Latency was reduced in a route- and cell type-dependent manner in mice infected with this recombinant virus. These findings identify a significant role for the noncanonical NF-κB signaling pathway that might provide a novel target to prevent latent infection of B cells with oncogenic gammaherpesviruses.


Assuntos
Infecções por Herpesviridae , Quinase I-kappa B , NF-kappa B , Rhadinovirus , Latência Viral , Animais , Infecções por Herpesviridae/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Rhadinovirus/fisiologia , Transdução de Sinais , Latência Viral/genética
14.
Annu Rev Virol ; 8(1): 349-371, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34586873

RESUMO

Gammaherpesviruses are an important class of oncogenic pathogens that are exquisitely evolved to their respective hosts. As such, the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi sarcoma herpesvirus (KSHV) do not naturally infect nonhuman primates or rodents. There is a clear need to fully explore mechanisms of gammaherpesvirus pathogenesis, host control, and immune evasion in the host. A gammaherpesvirus pathogen isolated from murid rodents was first reported in 1980; 40 years later, murine gammaherpesvirus 68 (MHV68, MuHV-4, γHV68) infection of laboratory mice is a well-established pathogenesis system recognized for its utility in applying state-of-the-art approaches to investigate virus-host interactions ranging from the whole host to the individual cell. Here, we highlight recent advancements in our understanding of the processes by which MHV68 colonizes the host and drives disease. Lessons that inform KSHV and EBV pathogenesis and provide future avenues for novel interventions against infection and virus-associated cancers are emphasized.


Assuntos
Infecções por Vírus Epstein-Barr , Gammaherpesvirinae , Infecções por Herpesviridae , Rhadinovirus , Animais , Herpesvirus Humano 4 , Camundongos , Latência Viral
15.
PLoS One ; 16(6): e0252313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34086743

RESUMO

Epstein-Barr virus (EBV) and Kaposi sarcoma herpesvirus (KSHV) are cancer-causing viruses that establish lifelong infections in humans. Gene editing using the Cas9-guideRNA (gRNA) CRISPR system has been applied to decrease the latent load of EBV in human Burkitt lymphoma cells. Validating the efficacy of Cas9-gRNA system in eradicating infection in vivo without off-target effects to the host genome will require animal model systems. To this end, we evaluated a series of gRNAs against individual genes and functional genomic elements of murine gammaherpesvirus 68 (MHV68) that are both conserved with KSHV and important for the establishment of latency or reactivation from latency in the host. gRNA sequences against ORF50, ORF72 and ORF73 led to insertion, deletion and substitution mutations in these target regions of the genome in cell culture. Murine NIH3T3 fibroblast cells that stably express Cas9 and gRNAs to ORF50 were most resistant to replication upon de novo infection. Latent murine A20 B cell lines that stably express Cas9 and gRNAs against MHV68 were reduced in their reactivation by approximately 50%, regardless of the viral gene target. Lastly, co-transfection of HEK293T cells with the vector expressing the Cas9-MHV68 gRNA components along with the viral genome provided a rapid read-out of gene editing and biological impact. Combinatorial, multiplex MHV68 gRNA transfections in HEK293T cells led to near complete ablation of infectious particle production. Our findings indicate that Cas9-gRNA editing of the murine gammaherpesvirus genome has a deleterious impact on productive replication in three independent infection systems.


Assuntos
Gammaherpesvirinae/genética , Genoma Viral/genética , RNA Guia de Cinetoplastídeos/genética , Animais , Linfócitos B/virologia , Sistemas CRISPR-Cas/genética , Linhagem Celular , Edição de Genes/métodos , Regulação Viral da Expressão Gênica/genética , Células HEK293 , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/genética , Humanos , Camundongos , Modelos Animais , Células NIH 3T3 , Ativação Viral/genética , Latência Viral/genética , Replicação Viral/genética
16.
PLoS Pathog ; 17(4): e1009560, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33930088

RESUMO

Herpes-Simplex Virus 1 (HSV-1) infects most humans when they are young, sometimes with fatal consequences. Gene expression occurs in a temporal order upon lytic HSV-1 infection: immediate early (IE) genes are expressed, then early (E) genes, followed by late (L) genes. During this infection cycle, the HSV-1 genome has the potential for exposure to APOBEC3 (A3) proteins, a family of cytidine deaminases that cause C>U mutations on single-stranded DNA (ssDNA), often resulting in a C>T transition. We developed a computational model for the mutational pressure of A3 on the lytic cycle of HSV-1 to determine which viral kinetic gene class is most vulnerable to A3 mutations. Using in silico stochastic methods, we simulated the infectious cycle under varying intensities of A3 mutational pressure. We found that the IE and E genes are more vulnerable to A3 than L genes. We validated this model by analyzing the A3 evolutionary footprints in 25 HSV-1 isolates. We find that IE and E genes have evolved to underrepresent A3 hotspot motifs more so than L genes, consistent with greater selection pressure on IE and E genes. We extend this model to two-step infections, such as those of polyomavirus, and find that the same pattern holds for over 25 human Polyomavirus (HPyVs) genomes. Genes expressed earlier during infection are more vulnerable to mutations than those expressed later.


Assuntos
Desaminases APOBEC/fisiologia , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/genética , Mutagênese/genética , Polyomavirus/fisiologia , Algoritmos , Regulação Viral da Expressão Gênica , Genes Precoces/genética , Herpes Simples/genética , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Modelos Teóricos , Mutação , Polyomavirus/genética , Polyomavirus/patogenicidade , Infecções por Polyomavirus/genética , Infecções por Polyomavirus/virologia , Replicação Viral/genética
17.
Viruses ; 12(8)2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717815

RESUMO

A common biologic property of the gammaherpesviruses Epstein-Barr Virus and Kaposi sarcoma herpesvirus is their use of B lymphocytes as a reservoir of latency in healthy individuals that can undergo oncogenic transformation later in life. Gammaherpesviruses (GHVs) employ an impressive arsenal of proteins and non-coding RNAs to reprogram lymphocytes for proliferative expansion. Within lymphoid tissues, the germinal center (GC) reaction is a hub of B cell proliferation and death. The goal of a GC is to generate and then select for a pool of immunoglobulin (Ig) genes that will provide a protective humoral adaptive immune response. B cells infected with GHVs are detected in GCs and bear the hallmark signatures of the mutagenic processes of somatic hypermutation and isotype class switching of the Ig genes. However, data also supports extrafollicular B cells as a reservoir engaged by GHVs. Next-generation sequencing technologies provide unprecedented detail of the Ig sequence that informs the natural history of infection at the single cell level. Here, we review recent reports from human and murine GHV systems that identify striking differences in the immunoglobulin repertoire of infected B cells compared to their uninfected counterparts. Implications for virus biology, GHV-associated cancers, and host immune dysfunction will be discussed.


Assuntos
Anticorpos Antivirais/genética , Linfócitos B/imunologia , Gammaherpesvirinae/imunologia , Genes de Imunoglobulinas , Imunoglobulinas/genética , Animais , Anticorpos Antivirais/imunologia , Linfócitos B/virologia , Centro Germinativo/imunologia , Humanos , Switching de Imunoglobulina , Imunoglobulinas/imunologia , Camundongos , Ativação Viral , Latência Viral
18.
Life Sci Alliance ; 3(3)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32029571

RESUMO

The gammaherpesviruses (γHVs), human Kaposi sarcoma-associated herpesvirus (KSHV), EBV, and murine γHV68 are prevalent infections associated with lymphocyte pathologies. After primary infection, EBV and γHV68 undergo latent expansion in germinal center (GC) B cells and persists in memory cells. The GC reaction evolves and selects antigen-specific B cells for memory development but whether γHV passively transients or manipulates this process in vivo is unknown. Using the γHV68 infection model, we analyzed the Ig repertoire of infected and uninfected GC cells from individual mice. We found that infected cells displayed the hallmarks of affinity maturation, hypermutation, and isotype switching but underwent clonal expansion. Strikingly, infected cells displayed distinct repertoire, not found in uninfected cells, with recurrent utilization of certain Ig heavy V segments including Ighv10-1 In a manner observed with KSHV, γHV68 infected cells also displayed lambda light chain bias. Thus, γHV68 subverts GC selection to expand in a specific B cell subset during the process that develops long-lived immunologic memory.


Assuntos
Gammaherpesvirinae/metabolismo , Centro Germinativo/imunologia , Infecções por Herpesviridae/imunologia , Animais , Linfócitos B/imunologia , Feminino , Gammaherpesvirinae/patogenicidade , Centro Germinativo/virologia , Memória Imunológica , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
PLoS Pathog ; 15(12): e1008192, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31809522

RESUMO

The hypoxia-inducible factor 1 alpha (HIF1α) protein and the hypoxic microenvironment are critical for infection and pathogenesis by the oncogenic gammaherpesviruses (γHV), Kaposi sarcoma herpes virus (KSHV) and Epstein-Barr virus (EBV). However, understanding the role of HIF1α during the virus life cycle and its biological relevance in the context of host has been challenging due to the lack of animal models for human γHV. To study the role of HIF1α, we employed the murine gammaherpesvirus 68 (MHV68), a rodent pathogen that readily infects laboratory mice. We show that MHV68 infection induces HIF1α protein and HIF1α-responsive gene expression in permissive cells. siRNA silencing or drug-inhibition of HIF1α reduce virus production due to a global downregulation of viral gene expression. Most notable was the marked decrease in many viral genes bearing hypoxia-responsive elements (HREs) such as the viral G-Protein Coupled Receptor (vGPCR), which is known to activate HIF1α transcriptional activity during KSHV infection. We found that the promoter of MHV68 ORF74 is responsive to HIF1α and MHV-68 RTA. Moreover, Intranasal infection of HIF1αLoxP/LoxP mice with MHV68 expressing Cre- recombinase impaired virus expansion during early acute infection and affected lytic reactivation in the splenocytes explanted from mice. Low oxygen concentrations accelerated lytic reactivation and enhanced virus production in MHV68 infected splenocytes. Thus, we conclude that HIF1α plays a critical role in promoting virus replication and reactivation from latency by impacting viral gene expression. Our results highlight the importance of the mutual interactions of the oxygen-sensing machinery and gammaherpesviruses in viral replication and pathogenesis.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Infecções por Herpesviridae/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Latência Viral/fisiologia , Replicação Viral/fisiologia , Animais , Camundongos , Rhadinovirus/metabolismo
20.
mBio ; 9(5)2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30377280

RESUMO

Misincorporation of uracil or spontaneous cytidine deamination is a common mutagenic insult to DNA. Herpesviruses encode a viral uracil-DNA glycosylase (vUNG) and a viral dUTPase (vDUT), each with enzymatic and nonenzymatic functions. However, the coordinated roles of these enzymatic activities in gammaherpesvirus pathogenesis and viral genomic stability have not been defined. In addition, potential compensation by the host UNG has not been examined in vivo The genetic tractability of the murine gammaherpesvirus 68 (MHV68) system enabled us to delineate the contribution of host and viral factors that prevent uracilated DNA. Recombinant MHV68 lacking vUNG (ORF46.stop) was not further impaired for acute replication in the lungs of UNG-/- mice compared to wild-type (WT) mice, indicating host UNG does not compensate for the absence of vUNG. Next, we investigated the separate and combinatorial consequences of mutating the catalytic residues of the vUNG (ORF46.CM) and vDUT (ORF54.CM). ORF46.CM was not impaired for replication, while ORF54.CM had a slight transient defect in replication in the lungs. However, disabling both vUNG and vDUT led to a significant defect in acute expansion in the lungs, followed by impaired establishment of latency in the splenic reservoir. Upon serial passage of the ORF46.CM/ORF54.CM mutant in either fibroblasts or the lungs of mice, we noted rapid loss of the nonessential yellow fluorescent protein (YFP) reporter gene from the viral genome, due to recombination at repetitive elements. Taken together, our data indicate that the vUNG and vDUT coordinate to promote viral genomic stability and enable viral expansion prior to colonization of latent reservoirs.IMPORTANCE Unrepaired uracils in DNA can lead to mutations and compromise genomic stability. Herpesviruses have hijacked host processes of DNA repair and nucleotide metabolism by encoding a viral UNG that excises uracils and a viral dUTPase that initiates conversion of dUTP to dTTP. To better understand the impact of these processes on gammaherpesvirus pathogenesis, we examined the separate and collaborative roles of vUNG and vDUT upon MHV68 infection of mice. Simultaneous disruption of the enzymatic activities of both vUNG and vDUT led to a severe defect in acute replication and establishment of latency, while also revealing a novel, combinatorial function in promoting viral genomic stability. We propose that herpesviruses require these enzymatic processes to protect the viral genome from damage, possibly triggered by misincorporated uracil. This reveals a novel point of therapeutic intervention to potentially block viral replication and reduce the fitness of multiple herpesviruses.


Assuntos
Deleção de Genes , Instabilidade Genômica , Pirofosfatases/metabolismo , Recombinação Genética , Rhadinovirus/enzimologia , Rhadinovirus/patogenicidade , Uracila-DNA Glicosidase/metabolismo , Animais , Genoma Viral , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Pulmão/virologia , Camundongos , Pirofosfatases/genética , Rhadinovirus/genética , Doenças dos Roedores/virologia , Uracila-DNA Glicosidase/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...